Question	1	2	3	4	5	6	7	8	Total
Marks									
Max Marks	5	4	5	6	4	6	7	8	45

Question 1

In this question you must show detailed reasoning.

(i) Express $3^{\frac{7}{2}}$ in the form $a\sqrt{b}$, where a is an integer and b is a prime number. [2]

(ii) Express
$$\frac{\sqrt{2}}{1-\sqrt{2}}$$
 in the form $c + d\sqrt{e}$, where c and d are integers and e is a prime number. [3]

Question 2

(i) The equation $x^2 + 3x + k = 0$ has repeated roots. Find the value of the constant k. [2]

[2]

[2]

[2]

(ii) Solve the inequality $6+x-x^2 > 0$.

Question 3

The probability distribution of a random variable *X* is given in the table.

x	0	2	4	6
P(X = x)	$\frac{3}{8}$	$\frac{5}{16}$	4 <i>p</i>	р

- (i) Find the value of p.
- (ii) Two values of X are chosen at random. Find the probability that the product of these values is 0. [3]

Question 4

In triangle *ABC*, AB = 20 cm and angle $B = 45^{\circ}$.

- (i) Given that AC = 16 cm, find the two possible values for angle C, correct to 1 decimal place. [4]
- (ii) Given instead that the area of the triangle is $75\sqrt{2}$ cm², find *BC*.

Question 5

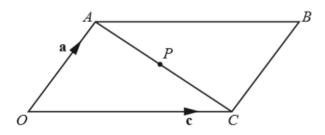
- (i) The curve $y = \frac{2}{3+x}$ is translated by four units in the positive x-direction. State the equation of the curve after it has been translated. [2]
- (ii) Describe fully the single transformation that transforms the curve $y = \frac{2}{3+x}$ to $y = \frac{5}{3+x}$. [2]

Question 6

- (i) Express $4x^2 12x + 11$ in the form $a(x+b)^2 + c$.
- (ii) State the number of real roots of the equation $4x^2 12x + 11 = 0$.
- (iii) Explain fully how the value of r is related to the number of real roots of the equation $p(x+q)^2 + r = 0$ where p, q and r are real constants and p > 0. [2]

Question 7

OABC is a parallelogram with $\overrightarrow{OA} = \mathbf{a}$ and $\overrightarrow{OC} = \mathbf{c}$. *P* is the midpoint of *AC*.



- (i) Find the following in terms of a and c, simplifying your answers.
 - (a) \overrightarrow{AC} [1]
 - (b) \overrightarrow{OP} [2]
- (ii) Hence prove that the diagonals of a parallelogram bisect one another. [4]

Question 8

A particle *P* is moving along a straight line with constant acceleration. Initially the particle is at *O*. After 9 s, *P* is at a point *A*, where OA = 18 m (see diagram) and the velocity of *P* at *A* is 8 m s^{-1} in the direction \overrightarrow{OA} .

- (i) (a) Show that the initial speed of P is 4 m s^{-1} . [2]
 - (b) Find the acceleration of *P*. [2]

B is a point on the line such that OB = 10 m, as shown in the diagram.

(ii) Show that P is never at point B.

[4]

[3]

[1]